Home
Class 11
MATHS
((1+i)/(1-i))^4+((1-i)/(1+i))^4= (A...

`((1+i)/(1-i))^4+((1-i)/(1+i))^4=` (A) `1` (B) `2` (C) `3` (D) `4`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(1-2i)+(3)/(1+4i)

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

Simplify [ (1)/(1 - 2i ) + (3)/( 1 + i ) ][ ( 3 + 4i )/( 2 - 4i ) ]

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

The value of (1+i)(1+i)^2(1+i)^3(1+i^4) is:

The value of (1+i)(1+i^2)(1+i^3)(1+i^4) is a. 2 b. 0 c. 1 d. i

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Reduce (1/(1- 4i)-2/(1+i)) ((3-4i)/(5+i)) to the standard form .

If one root of x^(2)-(3+2i)x+(1+3i)=0 is 1+i then the other root is A) 1-i B) 2+i C) 3+i D) 1+3i