Home
Class 12
MATHS
If A=[(0,sin alpha, sinalpha sinbeta),(-...

If `A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)]` then (A) `|A|` is independent of `alpha and beta` (B) `A^-1` depends only on beta (C) `A^-1` does not exist (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta=0=sinalpha+sinbeta" then "cos2alpha+cos2beta

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

Evaluate Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}|

Evaluate: =|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .

The determinant : |(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta)|=0 is independent of :

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

Find |A| if A=[{:(0,sinalpha,cosalpha),(sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}]

Evaluate triangle = |[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|