Home
Class 12
MATHS
" bar "tan^(-1)(4sqrt(x))/(2-2x)...

" bar "tan^(-1)(4sqrt(x))/(2-2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((1+2x)/(1-2x))wdotrdottsqrt(1+4x^2) and tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)(x)

Prove that "tan"^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/(4)+1/(2)"cos"^(-1)x^(2) .

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2) .

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

If "tan"^(-1)(sqrt(1+x^(2))-1)/x=4^(@) then

Differentiate tan^(-1)((1+2x)/(1-2x))w*r.t sqrt(1+4x^(2))tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)(x)