Home
Class 11
MATHS
Prove that cos ((pi)/(4) + x) + cos ((...

Prove that
`cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt2 cos x = R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT BANGLISH|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT BANGLISH|Exercise EXERCISE 3.2|10 Videos
  • STRAIGHT LINES

    NCERT BANGLISH|Exercise Miscellaneous Exercise on Chapter 10|24 Videos

Similar Questions

Explore conceptually related problems

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove that cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)=-1/2

Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3)) + cos ^(2) (x - (pi)/(3)) = 3/2.

cos ((pi)/(4) - x) cos ((pi)/(4) -y) - sin ((pi)/(4) -x) sin ((pi)/(4) -y) = sin ( x +y)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

The value of cos ((3pi)/2 + x)cos (2pi + x){cot ((3pi)/2 - x) + cot (2pi + x)} is-

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

Prove that, 16 "cos" (2pi)/15 "cos" (4pi)/15 "cos" (8pi)/15 "cos" (16pi)/15 =1

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1