Home
Class 12
MATHS
If A,B,C be the angles ofa triangle then...

If A,B,C be the angles ofa triangle then prove that `(sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that (sin A+sin B)(sin B+sin C)(sin C+sin A)>sin A sin B sin C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

In triangle ABC , prove that sinA=sin(B+C)

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A B C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cosC+i sinC) =

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

If A,B,C are the angle of a triangle then the value of determinant |(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C)| is a) pi b) 2lambda c)0 d)None of these

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)