Home
Class 14
MATHS
If (dy)/(dx)=e^(x+y) and it is given y=1...

If `(dy)/(dx)=e^(x+y)` and it is given `y=1` for `x=1` then find the value of `y` for `x=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

(x-y)(1-(dy)/(dx))=e^(x)

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(dy)/(dx)=(x+y+1)/(x+y-1) , given y=1, when x=1

if y^(x)-x^(y)=1 then the value of (dy)/(dx) at x=1 is

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

(dy)/(dx)=(x+y+1)/(x+y-1) given y=1 when x=1

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))