Home
Class 12
MATHS
int(0)^(1)x sqrt((1-x^(2))/(1+x^(2)))dx=...

int_(0)^(1)x sqrt((1-x^(2))/(1+x^(2)))dx=(pi-2)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

The value of (8sqrt2)/(pi)int_(0)^(1)((1-x^(2))/(1+x^(2)))(dx)/(sqrt(1+x^(4))) is _____________

Show that int_(0)^(1)(dx)/((1+x^(2))sqrt(2+x^(2))) = (pi)/(6)

Prove that (pi)/(6)

" (b) "int_(0)^(a)sqrt((a-x)/(a+x))dx=a((pi)/(2)-1)

Show that int_(0)^(1//3)(dx)/((1+x^(2))sqrt(1-x^(2))) = (pi)/(4sqrt(2))

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2