Home
Class 11
PHYSICS
The thermal emissivitites of two bodies ...

The thermal emissivitites of two bodies `A` and `B` are in the ratio of `1//e`. The outer surface area of the bodies are same and they radiate the energy at the same rate. Find the ratio of the wavelength corresponding to the maximum spherical radiance in the radiation from `A` to maximum spectral radiance in the radiation from `B`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The wavelength lambda_B corresponding to maximum spectral radiancy from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A by 1.0 mum . If the temperature of A is 5802 K, calculate (a) the temperature of B, (b) wavelength lambda_B .

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The wavelength lambda_B corresponding to maximum spectral radiancy from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A by 1.0 mum . If the temperature of A is 5802 K, calculate (a) the temperature of B, (b) wavelength lambda_B .

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The wavelength lambda_B corresponding to maximum spectral radiancy from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A by 1.0 mum . If the temperature of A is 5802 K, calculate (a) the temperature of B, (b) wavelength lambda_B .

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The wavelength lambda_B corresponding to maximum spectral radiancy from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A by 1.0 mum . If the temperature of A is 5802 K, calculate (a) the temperature of B, (b) wavelength lambda_B .

Two bodies A and B ahave thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power of the same rate. The wavelength lambda_B corresponding to maximum spectral radiancy in the radiation from B shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A, by 1.00mum. If the temperature of A is 5820K:

Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength lambda_(B) corresponding to maximum spectral radiancy in the radiation from B shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A, by 1.00 mu m. If the temperature of A is 5802 K