Home
Class 12
MATHS
If f(x) is continuous at x=3, where f(x)...

If `f(x)` is continuous at `x=3`, where `f(x)=(x^(2)-7x+12)/(x^(2)-5x+6)`,for `x!=3`, then `f(3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4-3x)/(4+5x))^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=2 , where f(x)=((x^(2)-x-2)^(20))/((x^(3)-12x+16)^(10)) , for x!=2 , then f(2)=

If f(x) is continuous at x=0 , where f(x)=((5^(x)-2^(x))x)/(cos 5x-cos 3x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((27-2x)^(1/3)-3)/(9-3(243+5x)^(1/5)) , for x!=0 then f(0)=

If f(x) is continuous for all x, where f(x)={:{((x^(2)-7x+12)/((x-2)^(2))", for "x!=2),(k ", for" x = 2 ):} , then k=

If f(x) is continuous at x=3 , where f(x)={:{((x^(2)-9)/(x-3),", for"x!=3),(2x+k,", otherwise"):} , then k=