Home
Class 12
MATHS
If |z| le1 and |w| lt 1, then shown that...

If `|z| le1` and `|w| lt 1`, then shown that `|z - w|^(2) lt (|z| - |w|)^(2)+ (arg z - arg w)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

| z | <= 1, | w | <= 1, then show that | zw | ^ (2) <= (| z | - | w |) ^ (2) + (argz-argw) ^ (2)

If |z|<=1,|w|<=1 , then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2

If |z|<=1,|w|<=1 , then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2

|z|<=1,|w|<=1 , then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z| <= 1 and |omega| <= 1, show that |z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2

If |z|<=1 and | omega|<=1, show that |z-omega|^(2)<=(|z|-| omega|)^(2)+(argz-arg omega)^(2)

If omega ne 1 is a cube root of unity and |z-1|^(2) + 2|z-omega|^(2) = 3|z - omega^(2)|^(2) then z lies on