Home
Class 10
MATHS
" : prove that "(a+b+c)(ab+bc+ca)>9abc....

" : prove that "(a+b+c)(ab+bc+ca)>9abc.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are positive, prove that (a + b + c) (ab + bc + ca) ge 9abc.

Prove (a + b + c) (ab + bc + ca) > 9abc

Prove that =ab+bc+ca+abc

If a, b, c are all positive, prove that 6abc le bc(b + c) + ca(c + a) + ab(a + b)

If a : b = b : c , then prove that (abc(a+b+c)^(3))/((ab+bc+ca)^(3)) = 1

If a, b, c are in A.P., prove that : (ab+ac)/(bc), (bc+ba)/ (ca), (ca+cb)/(ab) are also in A.P.

Suppose a, b, c are in A.P. Prove that (ab+bc+ca)/(bc),(ab+bc+ca)/(ca),(ab+bc+ca)/(ab) are in A.P.

If a,b,c are in G.P.then prove that (a^(2)+ab+b^(2))/(bc+ca+ab)=(b+a)/(c+b)

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3