Home
Class 12
MATHS
y=tan^(-1)(3a^2x-x^3)/(a(a^2-3x^2))...

`y=tan^(-1)(3a^2x-x^3)/(a(a^2-3x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)(3a^(2)x-x^(3))/(a(a^(2)-3x^(2)))

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

if y=(tan^(-1)(3a^(2)x-x^(3)))/(a(a^(2)-3x^(2))) then (dy)/(dx)

If y = tan^(-1)((3x-x^(3))/(1-3x^(2))) + tan^(-1) ((4x-4x^(3))/(1-6x^(2) + 4x^(4))) then (dy)/(dx) =

For any a ,\ b ,\ x ,\ y >0 , prove that : 2/3tan^(-1)((3a b^2-a^3)/(b^3-3a^2b))+2/3tan^(-1)((3x y^2-x^3)/(y^3-3x^2y))=tan^(-1)(2alphabeta)/(alpha^2-beta^2) , where alpha=-a x+b y beta=b x+a ydot

Draw the graph of y=(3x-x^(3))/(1-3x^(2)) and hence the graph of y=tan^(-1).(3x-x^(3))/(1-3x^(2)) .

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))