Home
Class 11
MATHS
Prove that : cos((pi)/4+x)+cos((pi)/4-x)...

Prove that : `cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt2 cos x = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos (pi/2 + x) = - sin x .

Prove that: cos3x=4cos^(3)x-3cosx

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove that cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1

Prove that cos ^(2) x+ cos ^(2) (x+ ( pi )/( 3)) +cos ^(2) (x- (pi)/(3)) =(3)/(2)

Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3) + cos ^(2) (x - (pi)/(3)) = 3/2.

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Prove thet sin^(2) (pi//6) + cos^(2) (pi//3)- tan^(2) (pi//4) = (-1)/(2)

Prove that cos^(2)+x+cos^(2) (x+pi/3)+cos^(2)(x-pi/3)=3/2 and hence find the values of sin^(2)x +sin^(2) (x+pi/3)+sin^(2) (x-pi/3)