Home
Class 11
MATHS
solve tan 2x =-cot (x+ ( pi )/(3) )...

solve `tan 2x =-cot (x+ ( pi )/(3) ) `

Text Solution

Verified by Experts

The correct Answer is:
`x = n pi + (5pi)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1

The solution of tan^(-1)x + 2 cot^(-1)x = (2pi)/(3) is

Solve 2 cot 2x -3 cot 3x = tan 2x .

Solve the differential equation (dy)/(dx) + y sec x = tan x, 0 le x lt (pi)/(2) .

Solve : tan^(-1)2x+tan^(-1)3x= (pi)/(4)

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

cos 2x- 3 cos x + 1=(1)/((cot 2 x - cot x)sin (x-pi)) holds , if

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

If tan^(-1) 2x + tan^(-1) 3x = (pi)/(4) , then x =

Let S={x in (-pi, pi) : x ne 0, pm pi/2} . The sum of all distinct solutions of the equation sqrt(3) sec x+cosec x + 2(tan x-cot x) =0 in the set S is equal to