Home
Class 11
MATHS
Prove that cos ^(2) x + cos ^(2) (x + (...

Prove that ` cos ^(2) x + cos ^(2) (x + (pi)/(3) + cos ^(2) (x - (pi)/(3)) = 3/2.`

Text Solution

Verified by Experts

The correct Answer is:
`3/2=R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2

cos ^(2) (3 pi)/(5)+cos ^(2) (4 pi)/(5)=

Prove that cos (pi/2 + x) = - sin x .

Prove that cos 3x=4 cos ^3x-3cos x

cos^(-1)("cos"(2pi)/3)

Prove that: cos3x=4cos^(3)x-3cosx

The maximum value of cos ^(2)((pi)/(3)-x)-cos ^(2)((pi)/(3)+x) is

Prove thet sin^(2) (pi//6) + cos^(2) (pi//3)- tan^(2) (pi//4) = (-1)/(2)

prove that 2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

Prove that cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1