Home
Class 11
MATHS
Prove that cos ( ( 3pi )/(2) + x) ) cos ...

Prove that `cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos (pi/2 + x) = - sin x .

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

solve tan 2x =-cot (x+ ( pi )/(3) )

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove that cos ^(2) x + cos ^(2) (x + (pi)/(3) + cos ^(2) (x - (pi)/(3)) = 3/2.

Prove that cos ^(2) x+ cos ^(2) (x+ ( pi )/( 3)) +cos ^(2) (x- (pi)/(3)) =(3)/(2)

Prove that : cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx

Prove that tan^(-1)x+cot^(-1)x=(pi)/(2), x in R .

prove that 2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

Prove thet sin^(2) (pi//6) + cos^(2) (pi//3)- tan^(2) (pi//4) = (-1)/(2)