Home
Class 11
MATHS
sec^(2)2x=1-tan2x...

`sec^(2)2x=1-tan2x`

Text Solution

Verified by Experts

The correct Answer is:
`x = (npi)/( 2), or (npi)/(2) + ( npi)/(2) + (3pi)/(8), n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the genral solution of sec^(2) 2x=1 -tan 2x

lim_(x rarr pi/4) (sec^(2)x-2)/(tan x -1) is

find the general solution of sec^(2)x tan y dx + sec^(2) y tan x dy = 0

Find the general solution of equation sec^(2) x=sqrt(2)(1-tan^(2)x)

The solution of the differential equation y sec^(2) x dx + tan x . Sec^(2) y dy = 0 is

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

If 0 lt x lt (pi)/(4) then sec 2 x-tan 2 x=

If 2 tan ^(-1)(cos x)=tan ^(-1)cosec^(2) x) then x=

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to