Home
Class 11
MATHS
If a+ib = (x+i)^(2)/(2x^(2)+1), prove th...

If `a+ib = (x+i)^(2)/(2x^(2)+1)`, prove that `a^(2) + b^(2) = (x^(2)+1)^(2)/(2x^(2) + 1)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+iy = (a+ib)/(a-ib) , prove that x^(2) + y^(2)=1 .

(i) If x-iy = sqrt((a-ib)/(c-id)) prove that (x^(2) + y^(2)) =(a^(2) + b^(2))/(c^(2) + d^(2))

If x-iy = sqrt((a+ib)/(c-id)) , prove that (x^(2) + y^(2))^(2) = (a^(2) + b^(2))/(c^(2) + d^(2))

If x + iy = sqrt((a + ib)/(c + id)) Prove that x^(2) + y^(2) = sqrt(( a^(2) + b^(2))/(c^(2) + d^(2)))

If x+iy=(a+ib)/(a-ib) , prove that x^(2)+y^(2)=1

If (x+iy) =(a+ib)/(a-ib) prove that (x^(2) +y^(2)) = 1 ?

(ii) If x + iy =(a+ib)/(a-ib) prove that x^(2) + y^(2)=1

If x+iy=(2+i)/(2-i) then prove taht x^(2)+y^(2)=1

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2