Home
Class 11
MATHS
If (x+iy)^(3) = u + iy, then show that u...

If `(x+iy)^(3) = u + iy`, then show that `u/x + v/y = 4(x^(2)-y^(2))`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3)=u+iv ,then show that u/x+v/y =4(x^(2) -y^(2)) ?

If (x+iy)^(1//3) = a+ib , where a, b, x, y in R show that x/a - y/b = -2(a^(2) + b^(2)) .

If x+iy=(2+i)/(2-i) then prove taht x^(2)+y^(2)=1

If x+y=(4pi)/(3) and sin x = 2 sin y , then

x+y+z=0 Show that x^(3)+y^(2)+z^(3)=3xyz

If P (x, y) lies on a circle whose centre is (3,-2) and radius is 3, show that x^(2) + y^(2) - 6x + 4y + 4 = 0 .

If y=(tan^(-1)x)^(2) , show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2 .

If u, v and w are functions of x, then show that (d)/(dx)(u.v.w) = (du)/(dx) v.w+u. (dv)/(dx).w+u.v(du)/(dx) in two ways-first by repeated application of product rule, second by logarithmic differentiation.