Home
Class 11
MATHS
If ((1+i)/(1-i))^(m)=1, then find the le...

If `((1+i)/(1-i))^(m)=1`, then find the least positive integral value of m.

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(m)=1 , then the least positive integral value of m is

If ((1+i)/(1-i))^(2m)=1 , then find the least integral value of m.

If omega be a cube root of unity and (1+omega^(2))^(n)=(1+omega^(4))^(n) , then the least positive value of n is

Find the least positive integer m such that ((1+i)/(1-i))^(4m)=1 .

Find the multiplicative inverse of 1+i.

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

Among the complex numbers, z satisfying |z+1-i| le 1 , the number having the least positive argument is :

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .

Find the modulus of (1-i) ?

If (a^(n)+b^n)/ (a^(n-1) +b^(n-1)) is the A.M. between a and b, then find the value of n.