Home
Class 12
MATHS
14.Let M be a 3times3 matrix satisfying ...

14.Let M be a 3times3 matrix satisfying M^(3)=0 .Then which of the following is TRUE? (|A| represent determinant of A ). a) If |M+I|=1 then |M^(2)-M+I|=1 b) If |M+I|=1 then |M^(2)-M+1|=0 c) If |M-I|=1 then |M^(2)+M+I|=1 d) If |M-I|=1 then |M^(2)+M+I|=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Let M be a 3xx3 matrix satisfying M^(3)=0 . Then which of the following statement(s) are true: (a) |M^(2)+M+I|ne0 (b) |M^(2)-M+I|=0 (c) |M^(2)+M+I|=0 (d) |M^(2)-M+I|ne0

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

Which of the following sets of quantum numbers are NOT possible? n=2, l=2, m_I=0 , m_s=+1/2 n=1, l=0, m_I=0 , m_s=+1/2 n=3, l=2, m_I=-3 , m_s=+1/2 n=2, l=1, m_I=1 , m_s=+1/2

If M is a 3xx3 matrix, where det M = I and M M^(T) = I, where I is an identity matrix, prove that det(M-I) = 0

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=