Home
Class 12
MATHS
Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1...

Show that `|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

Show that if A= { 1,2,3} and R ={(1,1),(2,2),(3,3) (1,2),(2,1),(2,3),(1,3) is an equivalence relation.

Show that if A= { 1,2,3} and R ={(1,1),(2,2),(3,3) (1,2),(2,1),(2,3),(1,3) is an equivalence relation.