Home
Class 12
MATHS
If tangent at (1,2) to the circle x^2+y^...

If tangent at (1,2) to the circle `x^2+y^2=5` intersect the circle `x^2+y^2=9` at A and B and tangents at A and B meets at C. Find the coordinate of C

Promotional Banner

Similar Questions

Explore conceptually related problems

If tangent at (1,2) to the circle C_(1):x^(2)+y^(2)=5 intersects the circle C_(2):x^(2)+y^(2)=9 at A and B and tangents at A and B to the second circle meet at point C, then the co- ordinates of C are given by

if a lie x-y=3 intersects the parabola y=(x-2)^(2)-1 at A and B and tangents at A and B meet again at point C.Then coordinates of point C is

A tangent to the circle x^(2)+y^(2)=1 through the point (0, 5) cuts the circle x^(2)+y^(2)=4 at P and Q. If the tangents to the circle x^(2)+y^(2)=4 at P and Q meet at R, then the coordinates of R are

Let (a, b) is the midpoint of the chord AB of the circle x^2 + y^2 = r^2. The tangents at A and B meet at C, then the area of triangle ABC

A tangent at a point on the circle x^(2)+y^(2)=a^(2) intersects a concentric circle C at two points P and Q. The tangents to the circle X at P and Q meet at a point on the circle x^(2)+y^(2)=b^(2). Then the equation of the circle is x^(2)+y^(2)=abx^(2)+y^(2)=(a-b)^(2)x^(2)+y^(2)=(a+b)^(2)x^(2)+y^(2)=a^(2)+b^(2)

if a variable tangent of the circle x^(2)+y^(2)=1 intersects the ellipse x^(2)+2y^(2)=4 at P and Q. then the locus of the points of intersection of the tangents at P and Q is

If the tangents are drawn to the circle x^(2)+y^(2)=12 at the point where it meets the circle x^(2)+y^(2)-5x+3y-2=0, then find the point of intersection of these tangents.