Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2, then value ...

Let `omega=-1/2+i(sqrt(3))/2,` then value of the determinant `|1 1 1 1-1-omega^2omega^2 1omega^2omega|"i s"` `3omega` (b) `3omega(omega-1)` `3omega^2` (d) `3omega(1-omega)`

A

`3 omega`

B

`3 omega ( omega -1)`

C

`3 omega^2`

D

`3 omega (1- omega)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `Delta=|{:(1" "1" "1),(1" "-1-omega^2" " omega^2),(1" " omega^(2) " "omega):}|`
Applying `R_2 rarr R_2-R_1: R_3 rarr R_3-R_3-R_1`
`=|{:(1" "1" "1),(0" "-2-omega^2" "omega^2-1),(0 " "omega^2-1" "omega-1):}|`
`=(-2 -omega^2)(omega-1)-(omega^2-1)^2`
`=-2omega+2-omega^2+omega^2-(omega^4-2omega^2+1)`
`3omega^2-3 omega=3 omega(omega-1)" "([because omega^4=omega)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY ( MATCH THE COLUMNS )|1 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 5 DE-MOIVRES THEOREM,CUBE ROOTS AND nth ROOTS OF UNITY ( FILL IN THE BLANKS )|2 Videos
  • COMPLEX NUMBERS

    IIT JEE PREVIOUS YEAR|Exercise TOPIC 4 ROTATION OF A COMPLEX NUMBER (INTERGER ANSWER TYPE QUESTION )|1 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos
  • DEFINITE INTEGRATION

    IIT JEE PREVIOUS YEAR|Exercise LIMITS AS THE SUM|6 Videos

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega = - (1)/(2) + i (sqrt3)/(2) , then the value of the determinant |(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))| , is

if omega=(-1+sqrt(3)i)/(2), then arg(omega^(2)) is

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is