Home
Class 12
MATHS
Prove that int(a)^(b)(x)dx = int(a)^(b)f...

Prove that `int_(a)^(b)(x)dx = int_(a)^(b)f(a+b-x)dx` and `int_(pi/4)^(pi/3)(dx)/(1+sqrt(tanx))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =

a) Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx" and evaluate "int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) b) Prove that |{:(1+a^(2)-b^(2), 2ab, -2b), (2ab, 1-a^(2)+b^(2), 2a), (2, -2a, 1-a^(2)-b^(2)):}|=(1+a^(2)+b^(2))^(3)

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))