Home
Class 12
MATHS
int (f'(x))/(sqrt(f(x)))dx=...

`int (f'(x))/(sqrt(f(x)))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Match the following {:("List - I "," List II "),( (A) int (f^(1)(x))/(f(x)) dx = ,(1) 2 sqrt(f(x)) +c ),((B) int (f^(1)(x))/(sqrt(f(x))) dx= , (2) (2)/(3) (f(x))^(3//2) + c ),((C) int f^(1) (x) sqrt(f(x)) dx =, (3)" log | f(x)| + c"),((D) int f^(1) (x).(f(x))^(2) dx = , (4) (1)/(3) (f(x))^(3) + c ):} The correct match for list -I from List - II is

int(f'(x))/([f(x)]^(2))dx=

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Let f(x)=(x+1)/(x+2). If int((f(x))/(x^(2)))^((1)/(2))dx=(1)/(sqrt(2))g((sqrt(2f(x))-1)/(sqrt(2f(x))+1))-h((sqrt(f(x))-1)/(sqrt(f(x))+1))

I : int (dx)/(sqrt(x)(x+9))=f(x)+c constnat, then f(x)=(2)/(3)Tan^(-1)((sqrt(x))/(3)) II : int (dx)/((x+100)sqrt(x+99))=f(x) +c rArr f(x)=2 Tan^(-1)sqrt(x+99)

If int (dx)/(sqrt(x)(x+9))=f(x)+ constant, then f(x)=

int (dx)/(sqrt(x) (x + 4)) = f(x) + c then f(x) =