Home
Class 11
MATHS
If x and y are acute angles such that si...

If x and y are acute angles such that` sin x =1/sqrt5` and `sin y =1/sqrt10` prove that `x+y=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x and y are acute angles such that cos x+cos y=(3)/(2) and sin x+sin y=(3)/(4) then sin(x+y)=

Find the acute angle between the lines x - sqrt3 y = 1 and sqrt3 x -y = 4

Find the acute angles between the st. lines : sqrt3 x+y =1 and x+sqrt3 y=1 .

if y = sqrt ((1 + sin x) / (1-sin x)), prove that cos x (dy) / (dx) = y

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

x = sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Prove that: (dy)/(dx) = -y/x

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x