Home
Class 11
MATHS
Prove that 2sin((5pi)/12)cos(pi/12)=(2+s...

Prove that `2sin((5pi)/12)cos(pi/12)=(2+sqrt3)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2sin (5pi/12)cos (pi/12)=(sqrt(3)+2)/2 .

Prove that; 2sin((5pi)/12)sin(pi/12)=1/2

Prove that 2"sin"(5pi)/(12)"cos"(pi)/(12)=(sqrt3+2)/2

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

Prove that; 2(sin(5 pi))/(12)(sin pi)/(12)=(1)/(2)

prove that : cos(pi/12)-sin(pi/12)=1/(sqrt(2))

Prove that, (sin""(5pi)/(12)-cos""(5pi)/(12))/(cos""(5pi)/(12)+sin""(5pi)/(12))=(1)/(sqrt(3))

Prove that: 15sin(5pi)/(12)+15cos(5pi)/(12)-20sin^3(5pi)/(12)-20cos(5pi)/(12)=0

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA

Prove that: i) sin(5pi)/(18) - cos(4pi)/(9) = sqrt(3)sinpi/9 ii) cos(3pi)/4+A-cos((3pi)/(4)-A)=-sqrt(2)sinA