Home
Class 12
MATHS
lim(x->0)(log(1+x+x^2)+"log"(1-x+x^2)...

`lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=` (a)`-1` (b) 1 (c) 0 (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(x rarr0)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)

lim_(x->0)log(1+2x)/x

lim_(x rarr0( a) -1)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)=

lim_(x rarr 0) (log (1 + x + x^(2))+ log (1 - x - x^(2)))/(sec x - cos x) is equal to :

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to