Home
Class 12
MATHS
lim(x->1){(1-x)(1-x^2).............(1-x^...

`lim_(x->1){(1-x)(1-x^2).............(1-x^(2n))}/{(1-x)(1-x^2).............(1-x^n)}^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)((1-x)(1-x^(2))............(1-x^(2n)))/({(1-x)(1-x^(2)).........(1-x^(n))}^(2))

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), ninN," equals"

Let f(x)=x+(1-x)x^(2)+(1-x)(1-x^(2))x^(3)+............+(1-x)(1-x^(2)).........(1-x^(n-1))x^(n);(n) then :

lim_(x rarr0)(e^(x)-1-x-(x^(2))/(2!)-.........-(x^(n))/(n!))/(x^(n+1))

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to

lim_(x->0)((1^x+2^x+...........+n^x)/n)^(1/x) is equal to