Home
Class 12
MATHS
The point of contact of a tangent from t...

The point of contact of a tangent from the point `(1, 2)` to the circle `x^2 + y^2 = 1` has the coordinates :

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of tangent from the point (2,-3) to the circle 2x^2 +2y^2=1 is

If the chord of contact of tangents from a point (x_1, y_1) to the circle x^2 + y^2 = a^2 touches the circle (x-a)^2 + y^2 = a^2 , then the locus of (x_1, y_1) is

The length of tangent from the point (2,-3) to the circle 2x^(2)+2y^(2)=1 is

If the chord of contact of tangents from a point P (x_1,y_1) to the circle x^2+y^2=a^2 touches the circle (x-a)^2+y^2 = a^2 , then the locus of (x_1, y_1) is :

If the chord of contact of tangents from a point (x_(1),y_(1)) to the circle x^(2)+y^(2)=a^(2) touches the circle (x-a)^(2)+y^(2)=a^(2), then the locus of (x_(1),y_(1)) is

If the chord of contact of tangents from a point (x_1,y_1) to the circle x^2+y^2=a^2 touches the circle (x-a)^2+y^2=a^2 , then the locus of (x_1,y_1) is :

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then