Home
Class 12
MATHS
Prove that "cos" (3pi)/13 + "cos" (5pi)...

Prove that
`"cos" (3pi)/13 + "cos" (5pi)/13 - 2 "cos" (9pi)/13 "cos" (12pi)/13 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 "cos"(pi)/13"cos"(9pi)/13+"cos"(3pi)/13+"cos"(5pi)/13=0

cos. (pi)/(13) + cos. (5pi)/(13) + cos. (8pi)/(13) + cos. (12pi)/(13)=

prove that 2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

2 cos ""(pi)/(13) cos ""(9pi)/(13) + cos ""(3pi)/(13) + cos "" (5pi)/(13) = 0.

Prove that 2 cos""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

Prove that : 2cos""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0