Home
Class 11
MATHS
Prove that cos ( ( 3pi )/(2) + x) ) cos ...

Prove that `cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos ((3pi)/2 + x)cos (2pi + x){cot ((3pi)/2 - x) + cot (2pi + x)} is-

Prove that: cos((3 pi)/(2)+x)cos(2pi+x)[cot((3 pi)/(2)-x)+cot(2 pi+x)]=1

cos ((3pi)/(2)+theta) cos (2pi+theta) xx [ cot ((3pi)/(2) -theta) + cot (2pi + theta) ] = ?

Prove that: cos((3 pi)/(2)+x)cos(2 pi+x){cot((3 pi)/(2)-x)+cot(2 pi+x)}=1

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi + x) cos (-x)) / (sin (pi-x) cos ((pi) / (2) -x)) = cot ^ (2) x