Home
Class 12
MATHS
5.f(x)=[sinx]+[cos] ,x epsilon [0,2pi], ...

5.f(x)=[sinx]+[cos] ,`x epsilon [0,2pi]`, where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to (A) 2 (B) 3 (C) 5 (D) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=[sinx]+[cosx] , x epsilon [0,2pi] , where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to i) 2 ii) 3 iii) 4 iv) 5

If f(x)=[sin x]+[cos x],x in[0,2 pi], where [.] denotes the greatest integer function.Then, the total number of points,where f(x) is non- differentiable,is (A)2(B)3(C)5(D)4

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes the greatest integer function ), then

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function