Home
Class 12
MATHS
If x+y+z= pi/2, prove that : cos(x-y-z) ...

If `x+y+z= pi/2`, prove that : `cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that cos(x-y) +cos (y-z) +cos (z-x)=-3/5 find cos x+ cos y + cos z

If x + y = z then cos ^ (2) x + cos ^ (2) y + cos ^ (2) z-2cos x cos y cos z =

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If cosx + cosy + cosz = 0 and sinx + siny + sinz =0 , then show that cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.

If cosx + cosy + cosz = 0 "and" sinx + siny + sinz =0, "then show that" cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.