Home
Class 12
MATHS
If r^2 - 2rs + s^2 = 4, then (r - s)^(6)...

If `r^2 - 2rs + s^2 = 4`, then `(r - s)^(6) `=

Promotional Banner

Similar Questions

Explore conceptually related problems

The lineas r = (6 - 6s) a + (4s - 4) b + (4 - 8s) c and r = (2t - 1) a + (4t - 2) b - (2t + 3) c intersect at

If (p ^(2) + q ^(2)) // (r ^(2) + s ^(2)) = (pq) //(rs), then what is the value of (p-q)/(p+q) in terms of r and s ?

If p, q, r, s are in G.P, show that (p^2 + q^2 + r^2) (q^2 + r^2 + s^2) = (pq + qr + rs)^2

If 4r+7s=23 and r-2s=17 then 3r+3s=

If p, q, r, s are in G.P. then show that (q -r )^(2) + ( r -p) ^(2) + ( s-q) ^(2) = ( p -s) ^(2)

Write the greatest common factor in each of the term. 63p ^(2) a ^(2) r ^(2)s, - 9 pq ^(2) r ^(2) s ^(2),- 60 p ^(2) a ^(2) rs ^(2)

Let S _(K) = sum _(r=1) ^(k) tan ^(-1) (( 6 ^r)/( 2 ^( 2 r + 1) + 3 ^( 2r +1))) . Then lim _( k to oo) S _(k) is equal to :

The simple interest at R% per annum for n years will be Rs R on a sum of (a) Rs n (b) Rs 100 n (c) R s(100)/n (d) R s(100)/(n^2)

If s_1,s_2,s_3.........s_r are the sum of the products of the roots taken 'r' at a time then for x^5 - x^2 + 4x - 9 = 0 => s_3 +s_4 - s_5 =