Home
Class 14
MATHS
I. 2x^(2) + 5x+1 = x^(2) + 2x - 1 II....

I. ` 2x^(2) + 5x+1 = x^(2) + 2x - 1`
II. ` 2y^(2) - 8y+1 =- 1`

A

` x gt y`

B

` x lt y`

C

` x = y`

D

` x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step. ### Step 1: Solve the first equation for x The first equation is: \[ 2x^2 + 5x + 1 = x^2 + 2x - 1 \] **Rearranging the equation:** Subtract \(x^2\), \(2x\), and \(-1\) from both sides: \[ 2x^2 + 5x + 1 - x^2 - 2x + 1 = 0 \] This simplifies to: \[ (2x^2 - x^2) + (5x - 2x) + (1 + 1) = 0 \] \[ x^2 + 3x + 2 = 0 \] **Factoring the quadratic:** Now, we can factor the quadratic: \[ x^2 + 3x + 2 = (x + 2)(x + 1) = 0 \] **Finding the roots:** Setting each factor to zero gives: 1. \( x + 2 = 0 \) → \( x = -2 \) 2. \( x + 1 = 0 \) → \( x = -1 \) ### Step 2: Solve the second equation for y The second equation is: \[ 2y^2 - 8y + 1 = -1 \] **Rearranging the equation:** Add 1 to both sides: \[ 2y^2 - 8y + 1 + 1 = 0 \] This simplifies to: \[ 2y^2 - 8y + 2 = 0 \] **Dividing by 2:** To simplify, divide the entire equation by 2: \[ y^2 - 4y + 1 = 0 \] **Using the quadratic formula:** The quadratic formula is: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = -4\), and \(c = 1\). Substituting the values: \[ y = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ y = \frac{4 \pm \sqrt{16 - 4}}{2} \] \[ y = \frac{4 \pm \sqrt{12}}{2} \] \[ y = \frac{4 \pm 2\sqrt{3}}{2} \] \[ y = 2 \pm \sqrt{3} \] ### Summary of Solutions - The values of \(x\) are: \(x = -2\) and \(x = -1\) - The values of \(y\) are: \(y = 2 + \sqrt{3}\) and \(y = 2 - \sqrt{3}\)

Let's solve the given equations step by step. ### Step 1: Solve the first equation for x The first equation is: \[ 2x^2 + 5x + 1 = x^2 + 2x - 1 \] **Rearranging the equation:** Subtract \(x^2\), \(2x\), and \(-1\) from both sides: ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

I. 6x^(2)+x-1=0 II. 8y^(2)+10y+3=0

Find the centre and radius of each of the following circles : (i) (x - 3)^(2) + (y- 1) ^(2) = 9 (ii) (x - (1)/(2) ) ^(2) + ( y + (1)/(3) ) ^(2) = (1)/(16) (iii) (x + 5) ^(2) + ( y- 3 ) ^(2) = 20 (iv) x ^(2) + (y- 1 ) ^(2) = 2

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

y = e ^ (xx) x tan ^ (- 1) x, showthat (1 + x ^ (2)) y_ (2) -2 (1-x + x ^ (2)) y_ (1) + (1 -x ^ (2)) y = 0

underset Prove that ((x ^ (- 1) + y ^ (- 1)) / (x ^ (- 1))) ^ (- 1) + ((x ^ (- 1) -y ^ (- 1) ) / (x ^ (- 1))) ^ (- 1) = (2y ^ (2)) / (y ^ (2) -x ^ (2))

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

IBPS & SBI PREVIOUS YEAR PAPER-EQUATIONS AND INEQUATIONS-MCQ
  1. The sum of four numbers is 48. When 5 and 1 are added to the first tw...

    Text Solution

    |

  2. Eighteen years ago, the ratio of A's age to B's age was 8 : 13. Th...

    Text Solution

    |

  3. I. 2x^(2) + 5x+1 = x^(2) + 2x - 1 II. 2y^(2) - 8y+1 =- 1

    Text Solution

    |

  4. I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

    Text Solution

    |

  5. I. 4x^(2) - 20x+ 19 = 4x - 1 II. 2y^(2) = 26y+ 84

    Text Solution

    |

  6. I. y^(2) + y - 1 = 4 - 2y - y^(2) II. x^(2)/2 - 3/2 x = x - 3

    Text Solution

    |

  7. I. 6x^(2) + 13x = 12 - x II. 1+2y^(2) = 2y + (5y)/ 6

    Text Solution

    |

  8. What is the value of m which satisfies 3m^(2) - 21 m + 30 lt 0?

    Text Solution

    |

  9. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  10. Let p and q be the roots of the quadratic equation x^(2) - (alpha - ...

    Text Solution

    |

  11. If the roots, x(1) and x(2), of the quadratic equation x^(2) - 2x + ...

    Text Solution

    |

  12. If the sum of a number and its square is 182, what is the number? a...

    Text Solution

    |

  13. I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = ...

    Text Solution

    |

  14. I. x^(3) = (root(3)(216))^(3)" " II.6y^(2) = 150

    Text Solution

    |

  15. I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = ...

    Text Solution

    |

  16. I. 20x^(2) + 9x+1 = 0" " II. 30y^(2) + 11y + 1= 0

    Text Solution

    |

  17. I. x^(2) + 17x+72 = 0" " II. y^(2) + 19y + 90 = 0

    Text Solution

    |

  18. I. 20x^(2) - x - 12 = 0 II. 20y^(2) + 27y + 9 = 0

    Text Solution

    |

  19. I. x^(32) - 218 = 106 II. y^(2) - 37y+342 = 0

    Text Solution

    |

  20. I. 7/sqrtx + 5/sqrtx = sqrtx II. y^(2) -((12)^(5//2))/sqrty = 0

    Text Solution

    |