Home
Class 14
MATHS
I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) ...

I. ` x^(2)/2 + x - 1/2 = 1`
II. ` 3y^(2) - 10y + 8 = y^(2) + 2y - 10`

A

` x gt y`

B

` x lt y`

C

` x = y`

D

` x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the equations step by step. ### Step 1: Solve the first equation for \( x \) The first equation is: \[ \frac{x^2}{2} + x - \frac{1}{2} = 1 \] To eliminate the fraction, we can multiply the entire equation by 2: \[ 2 \left(\frac{x^2}{2}\right) + 2x - 2\left(\frac{1}{2}\right) = 2 \cdot 1 \] This simplifies to: \[ x^2 + 2x - 1 = 2 \] ### Step 2: Rearrange the equation Now, we will move all terms to one side: \[ x^2 + 2x - 1 - 2 = 0 \] This simplifies to: \[ x^2 + 2x - 3 = 0 \] ### Step 3: Factor the quadratic equation Next, we will factor the quadratic equation: \[ x^2 + 3x - x - 3 = 0 \] This can be factored as: \[ (x + 3)(x - 1) = 0 \] ### Step 4: Find the values of \( x \) Setting each factor to zero gives us: \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] \[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \] Thus, the solutions for \( x \) are: \[ x = -3 \quad \text{and} \quad x = 1 \] ### Step 5: Solve the second equation for \( y \) The second equation is: \[ 3y^2 - 10y + 8 = y^2 + 2y - 10 \] First, we will move all terms to one side: \[ 3y^2 - 10y + 8 - y^2 - 2y + 10 = 0 \] This simplifies to: \[ 2y^2 - 12y + 18 = 0 \] ### Step 6: Factor the quadratic equation Now, we can factor out a common factor of 2: \[ 2(y^2 - 6y + 9) = 0 \] This can be factored as: \[ 2(y - 3)(y - 3) = 0 \] ### Step 7: Find the values of \( y \) Setting the factor to zero gives us: \[ y - 3 = 0 \quad \Rightarrow \quad y = 3 \] Thus, the solution for \( y \) is: \[ y = 3 \quad \text{(with a multiplicity of 2)} \] ### Step 8: Determine the relationship between \( x \) and \( y \) Now we have: - \( x = -3 \) or \( x = 1 \) - \( y = 3 \) We need to find the relationship between \( x \) and \( y \): 1. For \( x = -3 \): \( y = 3 \) implies \( y > x \) 2. For \( x = 1 \): \( y = 3 \) also implies \( y > x \) Thus, we conclude that: \[ y > x \quad \text{or} \quad x < y \] ### Final Answer: The relationship is \( x < y \). ---

Let's solve the equations step by step. ### Step 1: Solve the first equation for \( x \) The first equation is: \[ \frac{x^2}{2} + x - \frac{1}{2} = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 10x^(2) - 7x + 1= 0" " II. 35y^(2) - 12y + 1 = 0

(i) 15x^(2) - 8x + 1 = 0 (ii) 6y^(2) - 19y + 10 = 0

I. 12x^(2)+ 11x+12 = 10x^(2) + 22x II. 13y^(2) - 18y+3=9y^(2) - 10y

I. 3x^(2) - 17x+10 = 0 II. 2y^(2) -5y+3 = 0

I. 2x^(2) + 5x+1 = x^(2) + 2x - 1 II. 2y^(2) - 8y+1 =- 1

I. y^(2) + y - 1 = 4 - 2y - y^(2) II. x^(2)/2 - 3/2 x = x - 3

(x + y) ^ (10) = x ^ (8) y ^ (2)

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

Determine whether the following represents a circle , a point or no circle : (i) 1- x^(2) - y^(2) = 0 (ii) x^(2) + y^(2) + 2x + 1 = 0 (iii) x^(2) + y^(2) - 3x + 3y + 10 = 0 .

I. 6x^(2)+x-1=0 II. 8y^(2)+10y+3=0

IBPS & SBI PREVIOUS YEAR PAPER-EQUATIONS AND INEQUATIONS-MCQ
  1. Eighteen years ago, the ratio of A's age to B's age was 8 : 13. Th...

    Text Solution

    |

  2. I. 2x^(2) + 5x+1 = x^(2) + 2x - 1 II. 2y^(2) - 8y+1 =- 1

    Text Solution

    |

  3. I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

    Text Solution

    |

  4. I. 4x^(2) - 20x+ 19 = 4x - 1 II. 2y^(2) = 26y+ 84

    Text Solution

    |

  5. I. y^(2) + y - 1 = 4 - 2y - y^(2) II. x^(2)/2 - 3/2 x = x - 3

    Text Solution

    |

  6. I. 6x^(2) + 13x = 12 - x II. 1+2y^(2) = 2y + (5y)/ 6

    Text Solution

    |

  7. What is the value of m which satisfies 3m^(2) - 21 m + 30 lt 0?

    Text Solution

    |

  8. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  9. Let p and q be the roots of the quadratic equation x^(2) - (alpha - ...

    Text Solution

    |

  10. If the roots, x(1) and x(2), of the quadratic equation x^(2) - 2x + ...

    Text Solution

    |

  11. If the sum of a number and its square is 182, what is the number? a...

    Text Solution

    |

  12. I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = ...

    Text Solution

    |

  13. I. x^(3) = (root(3)(216))^(3)" " II.6y^(2) = 150

    Text Solution

    |

  14. I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = ...

    Text Solution

    |

  15. I. 20x^(2) + 9x+1 = 0" " II. 30y^(2) + 11y + 1= 0

    Text Solution

    |

  16. I. x^(2) + 17x+72 = 0" " II. y^(2) + 19y + 90 = 0

    Text Solution

    |

  17. I. 20x^(2) - x - 12 = 0 II. 20y^(2) + 27y + 9 = 0

    Text Solution

    |

  18. I. x^(32) - 218 = 106 II. y^(2) - 37y+342 = 0

    Text Solution

    |

  19. I. 7/sqrtx + 5/sqrtx = sqrtx II. y^(2) -((12)^(5//2))/sqrty = 0

    Text Solution

    |

  20. I. sqrt(361x) + sqrt(16) = 0 II. sqrt(441) y + 4 = 0

    Text Solution

    |