Home
Class 14
MATHS
I. y^(2) + y - 1 = 4 - 2y - y^(2) II...

I. ` y^(2) + y - 1 = 4 - 2y - y^(2) `
II. ` x^(2)/2 - 3/2 x = x - 3`

A

If ` x gt y`

B

If ` x lt y`

C

If ` x = y`

D

If ` x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step, let's start with the first equation involving \( y \): ### Step 1: Solve the first equation \( y^2 + y - 1 = 4 - 2y - y^2 \) 1. Rearrange the equation by moving all terms to one side: \[ y^2 + y - 1 + 2y + y^2 - 4 = 0 \] This simplifies to: \[ 2y^2 + 3y - 5 = 0 \] ### Step 2: Factor the quadratic equation 2. To factor \( 2y^2 + 3y - 5 = 0 \), we can use the middle term splitting method. We need two numbers that multiply to \( 2 \times (-5) = -10 \) and add to \( 3 \). The numbers \( 5 \) and \( -2 \) work: \[ 2y^2 + 5y - 2y - 5 = 0 \] Grouping the terms: \[ (2y^2 + 5y) + (-2y - 5) = 0 \] Factoring by grouping: \[ y(2y + 5) - 1(2y + 5) = 0 \] This gives: \[ (2y + 5)(y - 1) = 0 \] ### Step 3: Find the values of \( y \) 3. Set each factor to zero: \[ 2y + 5 = 0 \quad \Rightarrow \quad y = -\frac{5}{2} \] \[ y - 1 = 0 \quad \Rightarrow \quad y = 1 \] Thus, the solutions for \( y \) are: \[ y = -\frac{5}{2} \quad \text{and} \quad y = 1 \] ### Step 4: Solve the second equation \( \frac{x^2}{2} - \frac{3}{2}x = x - 3 \) 4. Rearranging gives: \[ \frac{x^2}{2} - \frac{3}{2}x - x + 3 = 0 \] Combine like terms: \[ \frac{x^2}{2} - \frac{5}{2}x + 3 = 0 \] Multiply through by \( 2 \) to eliminate the fraction: \[ x^2 - 5x + 6 = 0 \] ### Step 5: Factor the quadratic equation 5. Factor \( x^2 - 5x + 6 = 0 \): \[ (x - 2)(x - 3) = 0 \] ### Step 6: Find the values of \( x \) 6. Set each factor to zero: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] \[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \] Thus, the solutions for \( x \) are: \[ x = 2 \quad \text{and} \quad x = 3 \] ### Step 7: Compare the values of \( x \) and \( y \) 7. Now we have the values: - For \( y \): \( -\frac{5}{2} \) and \( 1 \) - For \( x \): \( 2 \) and \( 3 \) Comparing these values: - The maximum value of \( y \) is \( 1 \). - The minimum value of \( x \) is \( 2 \). ### Conclusion Since \( 2 > 1 \), we conclude that: \[ x > y \]

To solve the given equations step by step, let's start with the first equation involving \( y \): ### Step 1: Solve the first equation \( y^2 + y - 1 = 4 - 2y - y^2 \) 1. Rearrange the equation by moving all terms to one side: \[ y^2 + y - 1 + 2y + y^2 - 4 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

IBPS & SBI PREVIOUS YEAR PAPER-EQUATIONS AND INEQUATIONS-MCQ
  1. I. x^(2)/2 + x - 1/2 = 1 II. 3y^(2) - 10y + 8 = y^(2) + 2y - 10

    Text Solution

    |

  2. I. 4x^(2) - 20x+ 19 = 4x - 1 II. 2y^(2) = 26y+ 84

    Text Solution

    |

  3. I. y^(2) + y - 1 = 4 - 2y - y^(2) II. x^(2)/2 - 3/2 x = x - 3

    Text Solution

    |

  4. I. 6x^(2) + 13x = 12 - x II. 1+2y^(2) = 2y + (5y)/ 6

    Text Solution

    |

  5. What is the value of m which satisfies 3m^(2) - 21 m + 30 lt 0?

    Text Solution

    |

  6. If one root of x^(2) + px+12 = 0 is 4, while the equation x ^(2)...

    Text Solution

    |

  7. Let p and q be the roots of the quadratic equation x^(2) - (alpha - ...

    Text Solution

    |

  8. If the roots, x(1) and x(2), of the quadratic equation x^(2) - 2x + ...

    Text Solution

    |

  9. If the sum of a number and its square is 182, what is the number? a...

    Text Solution

    |

  10. I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = ...

    Text Solution

    |

  11. I. x^(3) = (root(3)(216))^(3)" " II.6y^(2) = 150

    Text Solution

    |

  12. I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = ...

    Text Solution

    |

  13. I. 20x^(2) + 9x+1 = 0" " II. 30y^(2) + 11y + 1= 0

    Text Solution

    |

  14. I. x^(2) + 17x+72 = 0" " II. y^(2) + 19y + 90 = 0

    Text Solution

    |

  15. I. 20x^(2) - x - 12 = 0 II. 20y^(2) + 27y + 9 = 0

    Text Solution

    |

  16. I. x^(32) - 218 = 106 II. y^(2) - 37y+342 = 0

    Text Solution

    |

  17. I. 7/sqrtx + 5/sqrtx = sqrtx II. y^(2) -((12)^(5//2))/sqrty = 0

    Text Solution

    |

  18. I. sqrt(361x) + sqrt(16) = 0 II. sqrt(441) y + 4 = 0

    Text Solution

    |

  19. In a family, a couple has a son and daughter. The age of the father ...

    Text Solution

    |

  20. x^(2) - 1 = 0, y^(2) + 4y + 3 = 0

    Text Solution

    |