Home
Class 14
MATHS
I. 4x^(2) - 32 x + 63 = 0" ...

I. ` 4x^(2) - 32 x + 63 = 0" "` II.` 2y^(2) - 11y + 15 = 0`

A

` x lt y`

B

`x gt y`

C

` x le y`

D

`x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations step by step, we will tackle each equation separately. ### Step 1: Solve the first equation \(4x^2 - 32x + 63 = 0\) 1. **Identify the coefficients**: - \(a = 4\), \(b = -32\), \(c = 63\) 2. **Use the quadratic formula**: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-32)^2 - 4 \cdot 4 \cdot 63 = 1024 - 1008 = 16 \] 4. **Substitute values into the quadratic formula**: \[ x = \frac{32 \pm \sqrt{16}}{2 \cdot 4} = \frac{32 \pm 4}{8} \] 5. **Calculate the two possible values of \(x\)**: - \(x_1 = \frac{32 + 4}{8} = \frac{36}{8} = 4.5\) - \(x_2 = \frac{32 - 4}{8} = \frac{28}{8} = 3.5\) ### Step 2: Solve the second equation \(2y^2 - 11y + 15 = 0\) 1. **Identify the coefficients**: - \(a = 2\), \(b = -11\), \(c = 15\) 2. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-11)^2 - 4 \cdot 2 \cdot 15 = 121 - 120 = 1 \] 4. **Substitute values into the quadratic formula**: \[ y = \frac{11 \pm \sqrt{1}}{2 \cdot 2} = \frac{11 \pm 1}{4} \] 5. **Calculate the two possible values of \(y\)**: - \(y_1 = \frac{11 + 1}{4} = \frac{12}{4} = 3\) - \(y_2 = \frac{11 - 1}{4} = \frac{10}{4} = 2.5\) ### Step 3: Compare the values of \(x\) and \(y\) - The values of \(x\) are \(4.5\) and \(3.5\). - The values of \(y\) are \(3\) and \(2.5\). ### Step 4: Determine the relationship between \(x\) and \(y\) - The maximum value of \(x\) is \(4.5\) and the maximum value of \(y\) is \(3\). - Therefore, \(x > y\). ### Final Conclusion The relationship between the values of \(x\) and \(y\) is \(x > y\). ---

To solve the given quadratic equations step by step, we will tackle each equation separately. ### Step 1: Solve the first equation \(4x^2 - 32x + 63 = 0\) 1. **Identify the coefficients**: - \(a = 4\), \(b = -32\), \(c = 63\) 2. **Use the quadratic formula**: ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. x^(2) - 6x = 7" " II. 2y^(2) + 13y + 15 = 0

I. x^(2) - 4x+3=0 II. y^(2) - 11y + 18 = 0

I. x^(2) -7x + 12 = 0" "II. 3y^(2) - 11y + 10 = 0

I. x^(2) + 4x+4 = 0 II. y^(2) - 8y + 16 = 0

I. 20x^(2) + 9x+1 = 0" " II. 30y^(2) + 11y + 1= 0

I. 2x^(2) + 17x + 35 = 0" "II.8y^(2) - 14y-15 = 0