Home
Class 14
MATHS
I. 12x^(2) + 17x+ 6 = 0" ...

I. ` 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0`

A

` x lt y`

B

`x gt y`

C

` x le y`

D

`x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations step by step, we will use the factorization method. ### Step 1: Solve the first equation \(12x^2 + 17x + 6 = 0\) 1. **Identify the coefficients**: - \(a = 12\) - \(b = 17\) - \(c = 6\) 2. **Multiply \(a\) and \(c\)**: - \(ac = 12 \times 6 = 72\) 3. **Find two numbers that multiply to \(ac\) (72) and add to \(b\) (17)**: - The numbers are \(8\) and \(9\) because \(8 \times 9 = 72\) and \(8 + 9 = 17\). 4. **Rewrite the equation using these numbers**: - \(12x^2 + 8x + 9x + 6 = 0\) 5. **Group the terms**: - \((12x^2 + 8x) + (9x + 6) = 0\) 6. **Factor by grouping**: - \(4x(3x + 2) + 3(3x + 2) = 0\) - \((4x + 3)(3x + 2) = 0\) 7. **Set each factor to zero**: - \(4x + 3 = 0\) or \(3x + 2 = 0\) 8. **Solve for \(x\)**: - From \(4x + 3 = 0\): \[ 4x = -3 \implies x = -\frac{3}{4} \] - From \(3x + 2 = 0\): \[ 3x = -2 \implies x = -\frac{2}{3} \] ### Step 2: Solve the second equation \(6y^2 + 5y + 1 = 0\) 1. **Identify the coefficients**: - \(a = 6\) - \(b = 5\) - \(c = 1\) 2. **Multiply \(a\) and \(c\)**: - \(ac = 6 \times 1 = 6\) 3. **Find two numbers that multiply to \(ac\) (6) and add to \(b\) (5)**: - The numbers are \(2\) and \(3\) because \(2 \times 3 = 6\) and \(2 + 3 = 5\). 4. **Rewrite the equation using these numbers**: - \(6y^2 + 2y + 3y + 1 = 0\) 5. **Group the terms**: - \((6y^2 + 2y) + (3y + 1) = 0\) 6. **Factor by grouping**: - \(2y(3y + 1) + 1(3y + 1) = 0\) - \((2y + 1)(3y + 1) = 0\) 7. **Set each factor to zero**: - \(2y + 1 = 0\) or \(3y + 1 = 0\) 8. **Solve for \(y\)**: - From \(2y + 1 = 0\): \[ 2y = -1 \implies y = -\frac{1}{2} \] - From \(3y + 1 = 0\): \[ 3y = -1 \implies y = -\frac{1}{3} \] ### Summary of Solutions: - The values of \(x\) are \(x = -\frac{3}{4}\) and \(x = -\frac{2}{3}\). - The values of \(y\) are \(y = -\frac{1}{2}\) and \(y = -\frac{1}{3}\). ### Step 3: Compare \(x\) and \(y\) 1. **Compare the values**: - \(x = -\frac{3}{4} \approx -0.75\) - \(x = -\frac{2}{3} \approx -0.67\) - \(y = -\frac{1}{2} = -0.5\) - \(y = -\frac{1}{3} \approx -0.33\) 2. **Determine the relationship**: - Since both values of \(x\) are less than both values of \(y\), we conclude: - \(x < y\) ### Final Answer: The relationship between \(x\) and \(y\) is \(x < y\). ---

To solve the given quadratic equations step by step, we will use the factorization method. ### Step 1: Solve the first equation \(12x^2 + 17x + 6 = 0\) 1. **Identify the coefficients**: - \(a = 12\) - \(b = 17\) - \(c = 6\) ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0

I. x ^(2) + 5x + 6 = 0 II. y^(2) + 3y +2 = 0

I. 15x^(2) - 29x - 14 = 0 II. 6y^(2) - 5y - 25 = 0

I. 5x^(2) + 28x + 15 = 0 II. 6y^(2) + 35y + 25 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. x^(2) + 17x+72 = 0" " II. y^(2) + 19y + 90 = 0

I. x^(2)+5x+6=0 II. y^(2) + 7y + 12 = 0