Home
Class 14
MATHS
I. 20x^(2) + 9x+1 = 0" " II. 30y^(...

I. ` 20x^(2) + 9x+1 = 0" "` II. `30y^(2) + 11y + 1= 0`

A

` x lt y`

B

`x gt y`

C

` x le y`

D

`x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given quadratic equations step by step, we will apply the factorization method for both equations. ### Step 1: Solve the first equation \( 20x^2 + 9x + 1 = 0 \) 1. **Identify coefficients**: - \( a = 20 \) - \( b = 9 \) - \( c = 1 \) 2. **Multiply \( a \) and \( c \)**: - \( ac = 20 \times 1 = 20 \) 3. **Find two numbers that multiply to \( ac \) (20) and add to \( b \) (9)**: - The numbers are \( 5 \) and \( 4 \) because \( 5 \times 4 = 20 \) and \( 5 + 4 = 9 \). 4. **Rewrite the equation**: - \( 20x^2 + 5x + 4x + 1 = 0 \) 5. **Factor by grouping**: - Group the terms: \( (20x^2 + 5x) + (4x + 1) = 0 \) - Factor out common terms: \( 5x(4x + 1) + 1(4x + 1) = 0 \) - Combine: \( (5x + 1)(4x + 1) = 0 \) 6. **Set each factor to zero**: - \( 5x + 1 = 0 \) or \( 4x + 1 = 0 \) 7. **Solve for \( x \)**: - From \( 5x + 1 = 0 \): \( x = -\frac{1}{5} \) - From \( 4x + 1 = 0 \): \( x = -\frac{1}{4} \) ### Step 2: Solve the second equation \( 30y^2 + 11y + 1 = 0 \) 1. **Identify coefficients**: - \( a = 30 \) - \( b = 11 \) - \( c = 1 \) 2. **Multiply \( a \) and \( c \)**: - \( ac = 30 \times 1 = 30 \) 3. **Find two numbers that multiply to \( ac \) (30) and add to \( b \) (11)**: - The numbers are \( 6 \) and \( 5 \) because \( 6 \times 5 = 30 \) and \( 6 + 5 = 11 \). 4. **Rewrite the equation**: - \( 30y^2 + 6y + 5y + 1 = 0 \) 5. **Factor by grouping**: - Group the terms: \( (30y^2 + 6y) + (5y + 1) = 0 \) - Factor out common terms: \( 6y(5y + 1) + 1(5y + 1) = 0 \) - Combine: \( (6y + 1)(5y + 1) = 0 \) 6. **Set each factor to zero**: - \( 6y + 1 = 0 \) or \( 5y + 1 = 0 \) 7. **Solve for \( y \)**: - From \( 6y + 1 = 0 \): \( y = -\frac{1}{6} \) - From \( 5y + 1 = 0 \): \( y = -\frac{1}{5} \) ### Summary of Solutions: - The values of \( x \) are \( -\frac{1}{5} \) and \( -\frac{1}{4} \). - The values of \( y \) are \( -\frac{1}{6} \) and \( -\frac{1}{5} \).

To solve the given quadratic equations step by step, we will apply the factorization method for both equations. ### Step 1: Solve the first equation \( 20x^2 + 9x + 1 = 0 \) 1. **Identify coefficients**: - \( a = 20 \) - \( b = 9 \) - \( c = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 10x^(2) - 7x + 1= 0" " II. 35y^(2) - 12y + 1 = 0

I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = 0

I. x^(2) -7x + 12 = 0" "II. 3y^(2) - 11y + 10 = 0

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 20x^(2) - x - 12 = 0 II. 20y^(2) + 27y + 9 = 0

I. x^(2) + 9x + 20 = 0" "II. Y^(2) = 16

I. 2x^(2) + 5x + 2 = 0" "II. Y^(2) + 9y + 20 = 0