Home
Class 14
MATHS
I. 3x^(2) - 7x+2 = 0" ...

I. ` 3x^(2) - 7x+2 = 0" " `
II. ` 2y^(2) - 11y + 15 = 0`

A

if ` x lt y`

B

if ` x gt y`

C

if ` x = y`

D

if `x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations step by step, we will start with the first equation and then move on to the second equation. ### Step 1: Solve the first equation \(3x^2 - 7x + 2 = 0\) 1. **Identify the coefficients**: Here, \(a = 3\), \(b = -7\), and \(c = 2\). 2. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-7)^2 - 4 \cdot 3 \cdot 2 = 49 - 24 = 25 \] 4. **Substitute into the quadratic formula**: \[ x = \frac{-(-7) \pm \sqrt{25}}{2 \cdot 3} = \frac{7 \pm 5}{6} \] 5. **Calculate the two possible values for \(x\)**: - First value: \[ x_1 = \frac{7 + 5}{6} = \frac{12}{6} = 2 \] - Second value: \[ x_2 = \frac{7 - 5}{6} = \frac{2}{6} = \frac{1}{3} \] ### Step 2: Solve the second equation \(2y^2 - 11y + 15 = 0\) 1. **Identify the coefficients**: Here, \(a = 2\), \(b = -11\), and \(c = 15\). 2. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-11)^2 - 4 \cdot 2 \cdot 15 = 121 - 120 = 1 \] 4. **Substitute into the quadratic formula**: \[ y = \frac{-(-11) \pm \sqrt{1}}{2 \cdot 2} = \frac{11 \pm 1}{4} \] 5. **Calculate the two possible values for \(y\)**: - First value: \[ y_1 = \frac{11 + 1}{4} = \frac{12}{4} = 3 \] - Second value: \[ y_2 = \frac{11 - 1}{4} = \frac{10}{4} = \frac{5}{2} \] ### Step 3: Determine the relationship between \(x\) and \(y\) - The values obtained are: - For \(x\): \(2\) and \(\frac{1}{3}\) - For \(y\): \(3\) and \(\frac{5}{2}\) Now we can compare these values: - \(x = 2\) and \(y = 3\) → \(x < y\) - \(x = \frac{1}{3}\) and \(y = 3\) → \(x < y\) - \(x = 2\) and \(y = \frac{5}{2}\) → \(x > y\) (not applicable since we need to compare all values) Thus, in both cases, we find that \(x\) can be less than \(y\). ### Final Conclusion: The relationship is that \(x\) can be less than \(y\). ---

To solve the equations step by step, we will start with the first equation and then move on to the second equation. ### Step 1: Solve the first equation \(3x^2 - 7x + 2 = 0\) 1. **Identify the coefficients**: Here, \(a = 3\), \(b = -7\), and \(c = 2\). 2. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 4x^(2) - 32 x + 63 = 0" " II. 2y^(2) - 11y + 15 = 0

I. x^(2) - 6x = 7" " II. 2y^(2) + 13y + 15 = 0

I. x^(2) - 4x+3=0 II. y^(2) - 11y + 18 = 0

I. x^(2) -7x + 12 = 0" "II. 3y^(2) - 11y + 10 = 0

3x + 2y = 0, x + 3y = 7

I. x^(2) - 3x + 2 = 0" "II. 2y^(2) - 7y+6 = 0

I. x^(2) - 7x + 10 = 0" "II. Y^(2) - 12y + 35 = 0

I. 10x^(2) - 7x + 1= 0" " II. 35y^(2) - 12y + 1 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. 3x^(2) - 22x + 7 = 0 II. y^(2) - 20y + 91 = 0