Home
Class 14
MATHS
I. 10x^(2) - 7x + 1= 0" ...

I. ` 10x^(2) - 7x + 1= 0" "`
II. ` 35y^(2) - 12y + 1 = 0 `

A

if ` x lt y`

B

if ` x gt y`

C

if ` x = y`

D

if `x ge y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equations given in the question, we will follow these steps: ### Step 1: Solve the first equation \(10x^2 - 7x + 1 = 0\) 1. **Identify the coefficients**: - \(a = 10\), \(b = -7\), \(c = 1\) 2. **Use the quadratic formula**: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-7)^2 - 4 \cdot 10 \cdot 1 = 49 - 40 = 9 \] 4. **Find the roots**: \[ x = \frac{7 \pm \sqrt{9}}{20} = \frac{7 \pm 3}{20} \] - First root: \[ x_1 = \frac{7 + 3}{20} = \frac{10}{20} = \frac{1}{2} \] - Second root: \[ x_2 = \frac{7 - 3}{20} = \frac{4}{20} = \frac{1}{5} \] ### Step 2: Solve the second equation \(35y^2 - 12y + 1 = 0\) 1. **Identify the coefficients**: - \(a = 35\), \(b = -12\), \(c = 1\) 2. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-12)^2 - 4 \cdot 35 \cdot 1 = 144 - 140 = 4 \] 4. **Find the roots**: \[ y = \frac{12 \pm \sqrt{4}}{70} = \frac{12 \pm 2}{70} \] - First root: \[ y_1 = \frac{12 + 2}{70} = \frac{14}{70} = \frac{1}{5} \] - Second root: \[ y_2 = \frac{12 - 2}{70} = \frac{10}{70} = \frac{1}{7} \] ### Step 3: Compare the values of \(x\) and \(y\) 1. **Values of \(x\)**: - \(x_1 = \frac{1}{2}\) - \(x_2 = \frac{1}{5}\) 2. **Values of \(y\)**: - \(y_1 = \frac{1}{5}\) - \(y_2 = \frac{1}{7}\) 3. **Comparison**: - Comparing \(x_1\) and \(y_1\): \[ \frac{1}{2} > \frac{1}{5} \] - Comparing \(x_2\) and \(y_1\): \[ \frac{1}{5} = \frac{1}{5} \] - Comparing \(x_1\) and \(y_2\): \[ \frac{1}{2} > \frac{1}{7} \] ### Conclusion: From the comparisons, we can conclude that: \[ x \geq y \] ### Final Answer: Thus, the relation between \(x\) and \(y\) is \(x \geq y\). ---

To solve the quadratic equations given in the question, we will follow these steps: ### Step 1: Solve the first equation \(10x^2 - 7x + 1 = 0\) 1. **Identify the coefficients**: - \(a = 10\), \(b = -7\), \(c = 1\) 2. **Use the quadratic formula**: ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2) -7x + 12 = 0" "II. 3y^(2) - 11y + 10 = 0

I. x^(2) - 7x + 10 = 0" "II. Y^(2) - 12y + 35 = 0

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. X^(2) - 8x+15 = 0" "II. Y^(2) -12y + 36 = 0

I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0

I. x^(2) - 5x - 14 = 0" "II. Y^(2) + 7y + 10 = 0

I. 2x^(2) + 17x + 35 = 0" "II.8y^(2) - 14y-15 = 0