Home
Class 14
MATHS
I. 3x^(2) + 7x = 6 " " II. 6(2y...

I. ` 3x^(2) + 7x = 6 " "` II. ` 6(2y^(2)+1) = 17 y`

A

if ` x lt y`

B

if ` x gt y`

C

if ` x = y`

D

if ` x le y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations step by step, we will tackle each equation separately and find the values of \( x \) and \( y \). ### Step 1: Solve the first equation \( 3x^2 + 7x = 6 \) 1. **Rearranging the equation**: \[ 3x^2 + 7x - 6 = 0 \] 2. **Factoring the quadratic equation**: We need to factor \( 3x^2 + 7x - 6 \). We look for two numbers that multiply to \( 3 \times (-6) = -18 \) and add to \( 7 \). The numbers \( 9 \) and \( -2 \) work. \[ 3x^2 + 9x - 2x - 6 = 0 \] Grouping terms: \[ (3x^2 + 9x) + (-2x - 6) = 0 \] Factoring by grouping: \[ 3x(x + 3) - 2(x + 3) = 0 \] Factor out \( (x + 3) \): \[ (x + 3)(3x - 2) = 0 \] 3. **Finding the values of \( x \)**: Set each factor to zero: \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] \[ 3x - 2 = 0 \quad \Rightarrow \quad x = \frac{2}{3} \] ### Step 2: Solve the second equation \( 6(2y^2 + 1) = 17y \) 1. **Rearranging the equation**: \[ 12y^2 + 6 - 17y = 0 \quad \Rightarrow \quad 12y^2 - 17y + 6 = 0 \] 2. **Factoring the quadratic equation**: We need to find two numbers that multiply to \( 12 \times 6 = 72 \) and add to \( -17 \). The numbers \( -9 \) and \( -8 \) work. \[ 12y^2 - 9y - 8y + 6 = 0 \] Grouping terms: \[ (12y^2 - 9y) + (-8y + 6) = 0 \] Factoring by grouping: \[ 3y(4y - 3) - 2(4y - 3) = 0 \] Factor out \( (4y - 3) \): \[ (4y - 3)(3y - 2) = 0 \] 3. **Finding the values of \( y \)**: Set each factor to zero: \[ 4y - 3 = 0 \quad \Rightarrow \quad y = \frac{3}{4} \] \[ 3y - 2 = 0 \quad \Rightarrow \quad y = \frac{2}{3} \] ### Step 3: Determine the relationship between \( x \) and \( y \) We found: - Values of \( x \): \( -3 \) and \( \frac{2}{3} \) - Values of \( y \): \( \frac{3}{4} \) and \( \frac{2}{3} \) Now, we compare these values: - \( \frac{2}{3} \) is greater than \( -3 \) and less than \( \frac{3}{4} \). - Therefore, \( x \) can be less than or equal to \( y \). ### Final Conclusion: The relationship between \( x \) and \( y \) is: \[ x \leq y \]

To solve the equations step by step, we will tackle each equation separately and find the values of \( x \) and \( y \). ### Step 1: Solve the first equation \( 3x^2 + 7x = 6 \) 1. **Rearranging the equation**: \[ 3x^2 + 7x - 6 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0

I. x^(2) - 6x = 7" " II. 2y^(2) + 13y + 15 = 0

I. x^(2) - 3x + 2 = 0" "II. 2y^(2) - 7y+6 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. 6x^(2) + 13x = 12 - x II. 1+2y^(2) = 2y + (5y)/ 6

I. 3x^(2) - 17x+10 = 0 II. 2y^(2) -5y+3 = 0

I 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0

6x + 5y = 7x + 3y + 1 = 2 ( x + 6y - 1 )

simplify: (i) 2p^(3) - 3p^(2) + 4p - 5- 6p^(3) + 2p^(2) - 8p - 2 + 6p + 8 (ii) 2x^(2) - xy + 6x - 4y + 5xy - 4x + 6x^(2) + 3y (iii) x^(4) - 6x^(3) + 2x - 7 + 7x^(3) - x + 5x^(2) + 2 - x^(4)