Home
Class 14
MATHS
I. 3x^(2) - 22x + 7 = 0" ...

I. ` 3x^(2) - 22x + 7 = 0" "II. Y^(2) - 20y+91 = 0`

A

` x gt y`

B

` x ge y`

C

` x lt y`

D

Relationship between x and y cannot be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations step by step, we will first tackle each quadratic equation separately, and then we will analyze the relationship between the solutions for \(x\) and \(y\). ### Step 1: Solve the first equation \(3x^2 - 22x + 7 = 0\) 1. **Identify the coefficients**: Here, \(a = 3\), \(b = -22\), and \(c = 7\). 2. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-22)^2 - 4 \cdot 3 \cdot 7 = 484 - 84 = 400 \] 4. **Substitute values into the quadratic formula**: \[ x = \frac{-(-22) \pm \sqrt{400}}{2 \cdot 3} = \frac{22 \pm 20}{6} \] 5. **Calculate the two possible values for \(x\)**: - First solution: \[ x_1 = \frac{22 + 20}{6} = \frac{42}{6} = 7 \] - Second solution: \[ x_2 = \frac{22 - 20}{6} = \frac{2}{6} = \frac{1}{3} \] Thus, the solutions for \(x\) are \(x = 7\) and \(x = \frac{1}{3}\). ### Step 2: Solve the second equation \(y^2 - 20y + 91 = 0\) 1. **Identify the coefficients**: Here, \(a = 1\), \(b = -20\), and \(c = 91\). 2. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = (-20)^2 - 4 \cdot 1 \cdot 91 = 400 - 364 = 36 \] 4. **Substitute values into the quadratic formula**: \[ y = \frac{-(-20) \pm \sqrt{36}}{2 \cdot 1} = \frac{20 \pm 6}{2} \] 5. **Calculate the two possible values for \(y\)**: - First solution: \[ y_1 = \frac{20 + 6}{2} = \frac{26}{2} = 13 \] - Second solution: \[ y_2 = \frac{20 - 6}{2} = \frac{14}{2} = 7 \] Thus, the solutions for \(y\) are \(y = 13\) and \(y = 7\). ### Step 3: Analyze the relationship between \(x\) and \(y\) We have the following solutions: - For \(x\): \(x = 7\) and \(x = \frac{1}{3}\) - For \(y\): \(y = 13\) and \(y = 7\) Now we can compare the values: - \(x = 7\) and \(y = 7\) gives \(x = y\). - \(x = \frac{1}{3}\) and \(y = 7\) gives \(x < y\). - \(x = \frac{1}{3}\) and \(y = 13\) gives \(x < y\). ### Conclusion The relationship between \(x\) and \(y\) can be summarized as: - \(x\) can be equal to \(y\) when both are \(7\). - \(x\) can be less than \(y\) in the other cases. Thus, we can say that: \[ x \leq y \]

To solve the equations step by step, we will first tackle each quadratic equation separately, and then we will analyze the relationship between the solutions for \(x\) and \(y\). ### Step 1: Solve the first equation \(3x^2 - 22x + 7 = 0\) 1. **Identify the coefficients**: Here, \(a = 3\), \(b = -22\), and \(c = 7\). 2. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2) - 7x + 10 = 0" "II. Y^(2) - 12y + 35 = 0

I 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0

I. x^(2) - 3x + 2 = 0" "II. 2y^(2) - 7y+6 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. x^(2) - 5x - 14 = 0" "II. Y^(2) + 7y + 10 = 0

I. 3x^(2) - 7x+2 = 0" " II. 2y^(2) - 11y + 15 = 0

I. 20x^(2) - x - 12 = 0 II. 20y^(2) + 27y + 9 = 0

I. x^(2) -7x + 12 = 0" "II. 3y^(2) - 11y + 10 = 0