Home
Class 14
MATHS
2x^(2) - 13x + 20 = 0, 2y^(2) - 7y + 6 =...

` 2x^(2) - 13x + 20 = 0, 2y^(2) - 7y + 6 = 0`

A

` x gt y`

B

` x lt y`

C

` x ge y`

D

` x le y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( 2x^2 - 13x + 20 = 0 \) and \( 2y^2 - 7y + 6 = 0 \), we will follow these steps: ### Step 1: Solve for \( x \) in the equation \( 2x^2 - 13x + 20 = 0 \) 1. **Identify the coefficients**: Here, \( a = 2 \), \( b = -13 \), and \( c = 20 \). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = (-13)^2 - 4 \cdot 2 \cdot 20 = 169 - 160 = 9 \] 3. **Use the quadratic formula**: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{13 \pm \sqrt{9}}{4} = \frac{13 \pm 3}{4} \] This gives us two possible values for \( x \): \[ x_1 = \frac{16}{4} = 4, \quad x_2 = \frac{10}{4} = \frac{5}{2} \] ### Step 2: Solve for \( y \) in the equation \( 2y^2 - 7y + 6 = 0 \) 1. **Identify the coefficients**: Here, \( a = 2 \), \( b = -7 \), and \( c = 6 \). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = (-7)^2 - 4 \cdot 2 \cdot 6 = 49 - 48 = 1 \] 3. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{D}}{2a} = \frac{7 \pm \sqrt{1}}{4} = \frac{7 \pm 1}{4} \] This gives us two possible values for \( y \): \[ y_1 = \frac{8}{4} = 2, \quad y_2 = \frac{6}{4} = \frac{3}{2} \] ### Step 3: Compare the values of \( x \) and \( y \) 1. **List the values obtained**: - \( x_1 = 4 \) - \( x_2 = \frac{5}{2} = 2.5 \) - \( y_1 = 2 \) - \( y_2 = \frac{3}{2} = 1.5 \) 2. **Order the values**: - The values of \( x \) are \( 2.5 \) and \( 4 \). - The values of \( y \) are \( 1.5 \) and \( 2 \). 3. **Determine the relationship**: - Comparing \( x \) and \( y \): - \( 4 > 2 \) - \( 2.5 > 2 \) - \( 2 > 1.5 \) Thus, we conclude that \( x \) is greater than \( y \). ### Final Result The relationship between \( x \) and \( y \) is: \[ x > y \] ---

To solve the equations \( 2x^2 - 13x + 20 = 0 \) and \( 2y^2 - 7y + 6 = 0 \), we will follow these steps: ### Step 1: Solve for \( x \) in the equation \( 2x^2 - 13x + 20 = 0 \) 1. **Identify the coefficients**: Here, \( a = 2 \), \( b = -13 \), and \( c = 20 \). 2. **Calculate the discriminant**: \[ D = b^2 - 4ac = (-13)^2 - 4 \cdot 2 \cdot 20 = 169 - 160 = 9 ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x^(2) - 3x + 2 = 0" "II. 2y^(2) - 7y+6 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

In the following question two equations are given in variables x and y. you have to solve these equations and determine the relation between x and y. I. 6x^(2) + 13x + 6 = 0 15y^(2) + 13y + 2 = 0

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer 6x^2 – 13x + 2 = 0 2y^2 – 19y + 30 = 0

I. 3x^(2) - 22x + 7 = 0 II. y^(2) - 20y + 91 = 0

x^(2) + x-20= 0, y^(2)-y-30=0

I. x^(2) - 6x = 7" " II. 2y^(2) + 13y + 15 = 0