Home
Class 14
MATHS
1/(x-3) + 1/(x+5) = 1/3 (y+2)(27-y)= 2...

` 1/(x-3) + 1/(x+5) = 1/3`
`(y+2)(27-y)= 210`

A

`x gt y`

B

` x lt y`

C

` x ge y`

D

` x le y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( \frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3} \) and \( (y+2)(27-y) = 210 \), we will proceed step by step. ### Step 1: Solve the first equation 1. Start with the equation: \[ \frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3} \] 2. Find a common denominator for the left side: \[ \frac{(x+5) + (x-3)}{(x-3)(x+5)} = \frac{1}{3} \] 3. Simplify the numerator: \[ \frac{2x + 2}{(x-3)(x+5)} = \frac{1}{3} \] 4. Cross-multiply: \[ 3(2x + 2) = (x-3)(x+5) \] 5. Expand both sides: \[ 6x + 6 = x^2 + 2x - 15 \] 6. Rearrange the equation to form a quadratic equation: \[ x^2 - 4x - 21 = 0 \] ### Step 2: Factor the quadratic equation 1. Factor the quadratic: \[ (x - 7)(x + 3) = 0 \] 2. Set each factor to zero: \[ x - 7 = 0 \quad \text{or} \quad x + 3 = 0 \] 3. Solve for \( x \): \[ x = 7 \quad \text{or} \quad x = -3 \] ### Step 3: Solve the second equation 1. Start with the equation: \[ (y + 2)(27 - y) = 210 \] 2. Expand the left side: \[ 27y - y^2 + 54 - 2y = 210 \] 3. Rearrange the equation: \[ -y^2 + 25y + 54 - 210 = 0 \] \[ -y^2 + 25y - 156 = 0 \] 4. Multiply through by -1: \[ y^2 - 25y + 156 = 0 \] ### Step 4: Factor the quadratic equation 1. Factor the quadratic: \[ (y - 12)(y - 13) = 0 \] 2. Set each factor to zero: \[ y - 12 = 0 \quad \text{or} \quad y - 13 = 0 \] 3. Solve for \( y \): \[ y = 12 \quad \text{or} \quad y = 13 \] ### Step 5: Determine the relationship between \( x \) and \( y \) 1. The values obtained are: - \( x = 7 \) or \( x = -3 \) - \( y = 12 \) or \( y = 13 \) 2. Compare the values: - For \( x = 7 \), \( y = 12 \) or \( y = 13 \) (both are greater than 7). - For \( x = -3 \), \( y = 12 \) or \( y = 13 \) (both are greater than -3). Thus, in both cases, \( y > x \). ### Final Answer The values of \( x \) are \( 7 \) and \( -3 \), and the values of \( y \) are \( 12 \) and \( 13 \). The relationship is \( y > x \). ---

To solve the equations \( \frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3} \) and \( (y+2)(27-y) = 210 \), we will proceed step by step. ### Step 1: Solve the first equation 1. Start with the equation: \[ \frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

(x) / (2) + (y) / (3) = 1 (x) / (3) + (y) / (2) = 1

If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

Find the S.D. between the lines : (i) (x)/(2) = (y)/(-3) = (z)/(1) and (x -2)/(3) = (y - 1)/(-5) = (z + 4)/(2) (ii) (x -1)/(2) = (y - 2)/(3) = (z - 3)/(2) and (x + 1)/(3) = (y - 1)/(2) = (z - 1)/(5) (iii) (x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x -3)/(1) = (y -5)/(-2) = (z - 7)/(1) (iv) (x - 3)/(3) = (y - 8)/(-1) = (z-3)/(1) and (x + 3)/(-3) = (y +7)/(2) = (z -6)/(4) .

(5) / (x-1) + (1) / (y-2) = 2 (6) / (x-1) - (3) / (y-2) = 1

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

(1) / (3x + y) + (1) / (3x-y) = (3) / (4) (1) / (2 (3x + y)) - (1) / (2 (3x-y) )) = - (1) / (8)

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0