Home
Class 14
MATHS
(x + 2) (x + 1) = (x -2) (x -3) (y+3)...

`(x + 2) (x + 1) = (x -2) (x -3)`
` (y+3)(y+2)=(y-1)(y-2)`

A

`x gt y`

B

` x lt y`

C

` x ge y`

D

` x le y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations step by step, we will start with the first equation and then move on to the second one. ### Step 1: Solve the first equation The first equation is: \[ (x + 2)(x + 1) = (x - 2)(x - 3) \] **Expanding both sides:** - Left side: \[ (x + 2)(x + 1) = x^2 + x + 2x + 2 = x^2 + 3x + 2 \] - Right side: \[ (x - 2)(x - 3) = x^2 - 3x - 2x + 6 = x^2 - 5x + 6 \] Now we have: \[ x^2 + 3x + 2 = x^2 - 5x + 6 \] **Step 2: Simplify the equation** Subtract \(x^2\) from both sides: \[ 3x + 2 = -5x + 6 \] **Step 3: Combine like terms** Add \(5x\) to both sides: \[ 3x + 5x + 2 = 6 \] \[ 8x + 2 = 6 \] **Step 4: Isolate \(x\)** Subtract 2 from both sides: \[ 8x = 4 \] Now divide by 8: \[ x = \frac{4}{8} = \frac{1}{2} = 0.5 \] ### Step 5: Solve the second equation The second equation is: \[ (y + 3)(y + 2) = (y - 1)(y - 2) \] **Expanding both sides:** - Left side: \[ (y + 3)(y + 2) = y^2 + 2y + 3y + 6 = y^2 + 5y + 6 \] - Right side: \[ (y - 1)(y - 2) = y^2 - 2y - y + 2 = y^2 - 3y + 2 \] Now we have: \[ y^2 + 5y + 6 = y^2 - 3y + 2 \] **Step 6: Simplify the equation** Subtract \(y^2\) from both sides: \[ 5y + 6 = -3y + 2 \] **Step 7: Combine like terms** Add \(3y\) to both sides: \[ 5y + 3y + 6 = 2 \] \[ 8y + 6 = 2 \] **Step 8: Isolate \(y\)** Subtract 6 from both sides: \[ 8y = -4 \] Now divide by 8: \[ y = \frac{-4}{8} = \frac{-1}{2} = -0.5 \] ### Step 9: Determine the relationship between \(x\) and \(y\) Now we have: - \(x = 0.5\) - \(y = -0.5\) Since \(0.5 > -0.5\), we conclude that: \[ x > y \] ### Final Answer The relationship between \(x\) and \(y\) is: \[ x > y \]

To solve the equations step by step, we will start with the first equation and then move on to the second one. ### Step 1: Solve the first equation The first equation is: \[ (x + 2)(x + 1) = (x - 2)(x - 3) \] ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

(x) / (2) + (y) / (3) = 1 (x) / (3) + (y) / (2) = 1

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Solve : (3)/(x + y ) + ( 2)/(x - y ) = 2 and (9)/(x + y ) - ( 4)/(x - y) = 1 .

If (2x + y + 2)/(5) = ( 3x - y + 1)/( 3 ) = ( 2 x + 2y + 1 )/(6) then

{:("Column" A ,, "Column" B), (225x^(2) - 625 y^(2) = ,, (a) 25(x-2) (x-2)), (x^(2) - x - y - y^(2) = ,, (b) 25(3x- 5y) (3x + 5y)), (x^(2) - x - y^(2) + y = ,, (x + y) (x - y- 1)), (25x^(2) - 100 x + 100 = ,, (d) (x - y) (x + y -1)), (,,(e) (x + y) (x + y - 1)):}

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

2x + 5y = 1 , 2x + 3y = 3 .