Home
Class 14
MATHS
I 3x^(2) + 4x + 1 = 0" ...

I` 3x^(2) + 4x + 1 = 0" "II. Y^(2) + 5y + 6 = 0`

A

if `x gt y`

B

if `x ge y`

C

if ` y gt x `

D

if ` y ge x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step and find the relationship between \( x \) and \( y \), we will first solve each equation separately. ### Step 1: Solve the first equation \( 3x^2 + 4x + 1 = 0 \) 1. **Identify the coefficients**: - \( a = 3 \) - \( b = 4 \) - \( c = 1 \) 2. **Use the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = 4^2 - 4 \cdot 3 \cdot 1 = 16 - 12 = 4 \] 4. **Calculate the roots**: \[ x = \frac{-4 \pm \sqrt{4}}{2 \cdot 3} = \frac{-4 \pm 2}{6} \] - For \( x_1 \): \[ x_1 = \frac{-4 + 2}{6} = \frac{-2}{6} = -\frac{1}{3} \] - For \( x_2 \): \[ x_2 = \frac{-4 - 2}{6} = \frac{-6}{6} = -1 \] Thus, the solutions for \( x \) are: \[ x = -1 \quad \text{and} \quad x = -\frac{1}{3} \] ### Step 2: Solve the second equation \( y^2 + 5y + 6 = 0 \) 1. **Identify the coefficients**: - \( a = 1 \) - \( b = 5 \) - \( c = 6 \) 2. **Use the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 3. **Calculate the discriminant**: \[ b^2 - 4ac = 5^2 - 4 \cdot 1 \cdot 6 = 25 - 24 = 1 \] 4. **Calculate the roots**: \[ y = \frac{-5 \pm \sqrt{1}}{2 \cdot 1} = \frac{-5 \pm 1}{2} \] - For \( y_1 \): \[ y_1 = \frac{-5 + 1}{2} = \frac{-4}{2} = -2 \] - For \( y_2 \): \[ y_2 = \frac{-5 - 1}{2} = \frac{-6}{2} = -3 \] Thus, the solutions for \( y \) are: \[ y = -2 \quad \text{and} \quad y = -3 \] ### Step 3: Find the relationship between \( x \) and \( y \) Now, we have the values: - \( x = -1 \) and \( x = -\frac{1}{3} \) - \( y = -2 \) and \( y = -3 \) Since there is no direct equality between the values of \( x \) and \( y \), we can compare the smallest values: - The smallest value of \( x \) is \( -1 \) - The smallest value of \( y \) is \( -3 \) ### Conclusion The relationship between the smallest values is: \[ -1 > -2 > -3 \]

To solve the given equations step by step and find the relationship between \( x \) and \( y \), we will first solve each equation separately. ### Step 1: Solve the first equation \( 3x^2 + 4x + 1 = 0 \) 1. **Identify the coefficients**: - \( a = 3 \) - \( b = 4 \) - \( c = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • DATA SUFFICIENCY AND DATA ANALYSIS

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise Multiple choice question|126 Videos
  • NUMBER SYSTEM, AVERAGE & AGE

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQs|72 Videos

Similar Questions

Explore conceptually related problems

I. x ^(2) + 5x + 6 = 0 II. y^(2) + 3y +2 = 0

I. 5x^(2) + 2x - 3 = 0" "II. 2y^(2) + 7y + 6 = 0

I. x^(2) - 3x + 2 = 0" "II. 2y^(2) - 7y+6 = 0

I. x^(2) + 4x+4 = 0 II. y^(2) - 8y + 16 = 0

I. x^(2) + 4x = 21 II y^(2) - 6y + 8 = 0

I. 5x^(2) + 28x + 15 = 0 II. 6y^(2) + 35y + 25 = 0

I. 12x^(2) + 17x+ 6 = 0" " II. 6y^(2) + 5y + 1 = 0

I. 15x^(2) - 29x - 14 = 0 II. 6y^(2) - 5y - 25 = 0